Arsenic Detox Using the Selenium Method
Arsenic
Detox Using the Selenium Method (8/20/2019)
Arsenic (As) is an element found in the earth’s crust.
Over 100 million people are exposed daily to toxic levels (greater than 50ppb)
of arsenic in their drinking water1. There are two oxidized inorganic
forms of arsenic that are both toxic: arsenite (As2O3)
and arsenate (As2O5). Arsenite is 50 times more toxic that arsenate. Some organic metabolites of arsenite and arsenate, such as
monomethylarsonate (MMA) and dimethylarsinate (DMA) are considered non-toxic.
Arsenite’s toxicity primarily stems from its ability to inactivate up to 200
enzymes, some of which are involved with cellular energy pathways and DNA
replication and repair1.
Arsenic enters the body primarily by being ingested,
but can also be inhaled or absorbed through the skin1. The primary source of arsenic in the U.S.
and worldwide is drinking water1. The urinary excretion of
arsenic after ingesting a single 500mcg dose of arsenic as arsenite, DMA, or
MMA has been studied as a function of time in human volunteers. Excretion rate of arsenite was much slower
than either DMA or MMA. After 4 days 46% of arsenite, 75% of DMA, and 78% of
MMA had been excreted in the urine2.
Once ingested and absorbed by the body, arsenite is
metabolized and excreted in the urine as 1/3 MMA and 2/3 DMA2. Since both MMA and DMA have a shorter
half-life in the body than arsenite and both MMA and DMA are considered non-toxic,
any agent that facilitates the
metabolism of arsenite to MMA and DMA will both detoxify arsenite3
and facilitate its elimination by urination2.
In 2006 it was shown
that urinary selenium levels correlate with urinary arsenic levels in a study
of 93 pregnant women3. In a prior study with adults, levels of DMA in
the urine correlated positively with levels of selenium in the urine4. In 2019 a case-control study of preschool
children found that higher blood plasma selenium levels were associated with a
higher percentage of DMA in their urine5. All of these human studies demonstrate that optimal selenium status
helps to detoxify arsenic by conversion to DMA and thereby facilitate its
elimination by urination. But even more importantly high plasma selenium has
been found to lower the risk of developmental delay in pre-school children
exposed to arsenic 5.
Supplements
for Arsenic Detox
Maintaining high plasma selenium is best achieved with a daily
seleneomethionine supplement because of its longer half-life (252 days) in the body
than inorganic forms of selenium, such as selenite (102 days)6. Selenomethionine
is also 50% to 100% more bioavailable than inorganic forms of selenium, such as
selenite (SeO32-)6. In a
study of 28 people (13 men and 15 women) taking 200mcg of selenomethionine
daily for 2 years it was found after 9 months men had increased their plasma
selenium by 60% and women by 102% as shown in Figure 17.
Figure
1.
Mean plasma selenium concentration, indicated with standard error bars, during
4 month baseline and over 28 months (mos) of selenomethionine supplementation
(200mcg/day) in men (black boxes) and women (white boxes). The arrow indicates
the start of selenium supplementation. Note that 158ppb is 2.0mmol/L of selenium.
The mechanism by which selenium enhances the
conversion of arsenite to DMA involves both the enzyme AS3MT and reduced thioredoxin8. AS3MT
catalyzes the transfer of methyl groups from the amino acid derivative S-adenosyl
methionine (a.k.a. SAM) to arsenite in order to make DMA. The selenium
containing enzyme thioredoxin reductase regenerates reduced thioredoxin that is
required for AS3MT’s methylation of arsenite. Since selenium deficiency inhibits
AS3MT’s production of DMA and thereby inhibits arsenic detox, selenium supplements
are beneficial for arsenic detox9. However, selenite inhibits AS3MT’s
production of DMA in cultured human hepatocytes. This is another reason
selenomethionine is a better choice than selenite for selenium supplementation10.
Supplements useful for converting arsenite to DMA for
detox, in addition to selenomethionine, include: methyl folate (a.k.a.
5-methyl-tetrahydrofolate, 5-MTHF) and amino acid chelated zinc that both facilitate
the production of SAM required for DMA biosynthesis. Note that 48% of the North
American population has genotypes resulting in lower than normal levels of
5-MTHF and should be taking daily supplemental 5-MTHF. Recommended dosage is
400mcg per day of 5-MTHF and 25 to 30mg per day of amino acid chelated zinc.
Symptoms
of Chronic Arsenic Toxicity
Epidemiology studies of people drinking water polluted
with arsenic have revealed that arsenic is a causal factor of a number of
pathologies. Some of these pathologies
are more prevalent in children than adults probably because arsenic negatively
impacts brain development. Symptoms of
chronic arsenic toxicity include:
Children
·
Developmental Delay in Pre-School Children11
·
IQ Loss in Pre-school and Grade-school (3
to 5) Children12,13
Adults
·
Prostate12,13, Skin, Lung,
Liver, Kidney, and Bladder Cancer
16
·
Cardiovascular (Atherosclerosis), and
Respiratory Diseases1,17
·
Skin Thickening (Hyperkeratosis) of the
Palms of the Hands and Soles of the Feet1
·
Diffuse Dark Spots on the Skin (Hyperpigmentation)
1
·
Low Neutrophil Count (Neutropenia) 1
·
Diabetes Mellitus1
·
Inflammation of the Kidneys (Nephritis) and
Kidney Disease (Nephrosis)15
In 2001 the U.S. EPA lowered the arsenic limit in
drinking water from 50ppb to 10ppb1. In 2014 IQ loss in children was observed at greater than or equal 5ppb of
arsenic in drinking water from wells in Maine13. In 2017 a higher risk of prostate cancer in men was
observed at greater than or equal 2.07ppb of arsenic in drinking water in Iowa14.
Based upon this recent data the U.S. EPA’s limit on arsenic in drinking water should
be immediately lowered to 2ppb.
Many regions of the world, including the U.S., currently
have over 2ppb of arsenic in drinking water and this may be leading to an
increased incidence of cancer as a recent clinical trial unexpectedly
discovered. The Nutritional Prevention
of Cancer Trial was a double-blind, randomized, placebo controlled, clinical
trial designed to test whether selenium supplementation would prevent
non-melanoma skin cancer. It involved 1,312 people living in the Eastern United
States who had previously been diagnosed with non-melanoma skin cancer. The
trial ran for 13 years from 1983 to 1996 and unexpectedly revealed that by
taking a daily selenium supplement (200mcg/day selenomethionine derived from
baker’s yeast) there was a 25% decrease in total cancer incidence a 52%
decrease in prostate cancer incidence, a 26% decrease in lung cancer incidence,
a 54% decrease in colorectal cancer incidence, and a 41% decrease in total
cancer mortality18.
Ironically, in spite of this trial revealing that
selenium supplementation lowers the incidence of cancer, this trial has been used
as an example of selenium causing cancer19. This is because the
trial also found selenium supplementation might
elevate the risk of squamous cell carcinoma and non-melanoma skin cancer. However, the authors of the study admit that this data indicating selenium as a carcinogen
“hovers at the margin of statistical significance” 18. This data may also be suspect because the
people selected for the trial had all been diagnosed with non-melanoma skin
cancer prior to the trial and were more prone than normal to have a relapse. Because
of this trial and recent research on selenium’s role in facilitating the
detoxification of the known carcinogen arsenic, inhibition of cell
proliferation, and tumor cell invasion, selenium
is now considered to be an anticancer nutrient20.
Until
the arsenic limit in drinking water is lowered to 2ppb, selenium
supplementation is recommended in those areas of the country and world where
arsenic in drinking water is over 2ppb. Either lowering the drinking water
limit to 2ppb of arsenic or implementing selenium fortification through diet
and supplementation would significantly lower cancer rates in adults and
developmental delay and IQ loss in children.
Arsenic
Detox
Selenium supplementation can provide protection from
chronic arsenic toxicity. Although the normal range of plasma selenium in adults
is 70 to 150ppb (0.9 to 1.9mmol/L
see Figure 1), levels of selenium above 150ppb (1.9mmole/L) have been found to provide
protection from arsenic toxicity. High levels of plasma selenium (i.e. greater than 150ppb for adults) have
been found to lower the risk of both arsenic-related developmental delay in
pre-school children5 and arsenic-related premalignant skin
lesions in adults17.
The selenium method of arsenic detox requires
taking orally a selenomethionine supplement daily in order to increase plasma
selenium to levels greater than 150ppb (1.9mmole/L – see Figure 1):
·
Children 0 to 3 years of age:
25mcg/day of selenomethionine
·
Children 4 to 8 years of age:
50mcg/day
·
Children 9 to 13 years of age:
100mcg/day
·
Adolescents 14 to 18 years of
age and adults: 200mcg/day
Supplements for human use are not regulated by
the U.S. FDA. Because of this, some supplement manufacturers have incorrectly
labeled their product as containing a specific amount selenomethionine, when
actually it contains no selenomethionine or less than the amount stated on the
label21-23. Therefore products with third party certification are
recommended. Certifying agencies
include: Consumerlab.com, NSF International, U.S. Pharmacopeia (USP), and
UL. There are commercial and university test
laboratories that also perform third party testing for purity and percent of
selenium as selenomethionine.
The European Food Safety Authority (EFSA) has
published a scientific opinion on acceptable selenium-enriched yeasts produced
as selenomethionine supplements for human use. The source of selenium must be
sodium selenite and the resulting product should contain 60 to 85%
selenomethionine with less the 10% additional organic selenium and less than 1%
inorganic selenium, such as residual sodium selenite. The dried product should
contain no more than 2.5mg of selenium per gram8.
I am aware of only one selenium-enriched yeast supplement that has
been tested by third parties and found to meet EFSA specifications. This is Bio-SelenoPrecise® tablets manufactured in Denmark by
Pharma Nord under patent no. 1 478 732 B1. This type of L-selenomethionine supplement
is 88.7% absorbed in Danish men with high habitual selenium intake24,
however only about 34% may actually be free selenomethionine after gastrointestinal
digestion with the rest being other organoselenium species25. Pharma Nord packages tablets of
Bio-SelenoPrecise® as 50, 100, and 200mcg of selenomethionine. Pharma Nord
selenomethionine has been checked by two laboratories having 69-83% L-selenomethionine,
5% or less additional organic selenium, including selenocysteine, less than 1%
inorganic selenium, and less than 2.2mg/gram of selenium. These results are
summarized in Table 1 of EFSA’s report wherein Bio-SelenoPrecise® is product 3a,
3b, and 46.
Some selenomethionine supplements are made with
higher purity than supplements made from selenium-enhanced yeast. However, it
has been reported that plasma selenium is significantly higher when taking
Pharma Nord Bio-SelenoPrecise® than seen in a comparable population of human
subjects taking the same dose of higher purity selenomethionine26.
Manufactures
of high purity selenomethionine who have their product third party certified and/or
tested include Sabinsa Corporation. Their Selenium SeLECT® product
contains a minimum of 1.25% of L-selenomethionine, measured by HPLC, and 98.75%
of dicalcium phosphate, measured by titration. Therefore Selenium SeLECT® is 100% selenium as selenomethionine. Sabinsa
Corp. has both UPC and NSF International product certification. Selenium SeLECT® is packaged and sold by Swanson
(100mcg and 200mcg capsules) and Vitacost
(200mcg capsules). Make sure the Supplement
Facts on the bottles state: “Selenium from (as) Selenium SeLECT® L-selenomethionine”.
The Food and Nutrition Board (FNB) of the U.S.
Institute of Medicine has set the tolerable upper intake levels (UL) for
selenium based upon age, including both
selenium obtained from food and selenium obtained from supplements, as indicated
in Table 127.
Table 1. Tolerable Upper Intake Level (UL)
for Selenium27
|
|
Age Group
|
UL (mcg/day)
|
Infants 0 - 6 months
|
45
|
Infants 6 - 12 months
|
60
|
Children 1 – 3 years
|
90
|
Children 4 – 8 years
|
150
|
Children 9 – 13 years
|
280
|
Adolescents 14-18 years
|
400
|
Adults 19 years and older
|
400
|
Selenium
in Food for Arsenic Detox
The amount of selenium in food depends upon both the type of food crop
and where the crop is grown. For
instance lentils can contain high levels of selenium depending upon where they
are grown (see Table 2)28,29.
The problem with using selenium in food for detox is the wide
variability of selenium concentration in the food unless it is grown in soil
that is naturally highly enriched with selenium or fertilized with selenium. In the case of lentils the variability in
selenium concentration is from 22mcg/kg in Syrian lentils to 672mcg/kg in
Saskatchewan (SK) lentils28,29. Unfortunately it is difficult to purchase
SK lentils because the location where they are grown is usually not indicted on
the package.
Table 2. Selenium in Lentils Grown in 7 Key
Lentil Producing Countries28,29
|
|
Country
|
Mean
Se Concentration (mcg/kg)
|
Australia
|
148
|
Canada (Saskatchewan)
|
672
|
Morocco
|
28
|
Nepal
|
180
|
Syria
|
22
|
Turkey
|
47
|
U.S.A.
|
26
|
Brazil nuts have been found to have high levels of
selenomethionine, selenothionine, and selenocystine30. However, the
problem with selenium variability in food is even worse with Brazil nuts than
lentils. In a random sample of 20 Brazil
nuts it has been found that the selenium concentration varied from 0.816mcg/gr
to 1390mcg/gr31. Since the mean weight of a single Brazil nut is 4
grams, it is possible by eating just one Brazil nut to either exceed the upper
tolerable selenium intake level for adults (400mcg/day - see Table 1) by 1400%
or consume only 0.8% of the upper tolerable selenium intake level for adults32. This variability in selenium concentration makes
Brazil nuts an unreliable daily selenium supplement. The variability of selenium in SK lentils is less than in Brazil nuts,
making SK lentils a more reliable daily selenium supplement.
Selenium
in Fertilizer for Arsenic Detox
Although crops take selenium from the soil and thereby
slowly deplete the soil of selenium, in general no effort is made to replace or
enhance the soil by fertilization with selenium. Due to extremely low selenium intake (25mcg/day)
by the people of Finland in the 1970’s, the government made a decision to
require selenium crop fertilization. Starting in 1984 Finland became the first
county in the world to use sodium selenate as a fertilizer ingredient for food
crops33. Currently all crop fertilizers used in Finland contain 15mg
of selenium per kilogram. Unfortunately Finland is still the only country to implement
this country-wide measure33.
After implementation of this program selenium
concentration in spring cereals has increased 15-fold and the mean increase of
selenium in beef, pork, and milk has increased 6-, 2-, and 3-fold,
respectively. This has resulted in the mean human plasma selenium concentration
of the Finish people increasing from almost deficiency (0.9mM/L) to normal
selenium status (1.4 mM/L)33.
Although the normal range of plasma selenium in adults
is 0.9 to 1.9mmol/L (see Figure
1), levels of selenium above 1.9mmole/L
have been found to provide protection from arsenic toxicity. Levels of plasma selenium greater than
1.9mmole/L have been found to lower the risk of
both arsenic-related developmental delay in pre-school children5
and arsenic-related premalignant skin lesions in adults17. Therefore in order to see less
developmental delay and less cancer, Finland’s 15mg/kg selenium addition to
fertilizers should be more than doubled in order to increase the Finish population’s
mean human plasma selenium concentration to 2mmole/L.
Selenium
in SK Lentils for Arsenic Detox
The total selenium in Saskatchewan (SK) lentils
ranges from 425 to 673mcg/kg and 86-95% of this selenium is selenomethionine
with 5-14% selenate and a very small amount of selenocysteine29,34. In 2012 the use of a selenium rich lentil diet
to prevent arsenic toxicity was proposed35. This proposal was first
tested in 2013 with two groups of rats
drinking 40ppm arsenic water that were fed either high-selenium SK lentils or
low-selenium U.S.A. (US) lentils. The
rats fed on SK lentils had significantly higher urinary and fecal arsenic
excretion than did the rats fed on US lentils36. In 2016 a similar study with mice drinking 200ppm arsenic in water
and eating SK lentils concluded that a diet of SK lentils will prevent
arsenic-triggered atherosclerosis37.
Lentils are a staple of the diet in Bangladesh
where 45 million people are routinely drinking arsenic laden water. Soils in
the Ganga-Nrahmaputra delta region of Bangladesh are naturally deficient in
selenium35. This deficiency leads to crops and food that is
deficient in selenium resulting in lower than normal plasma selenium levels in
those eating only locally grown food.
Would
there be less pathology due to arsenic toxicity, if the people of Bangladesh
ate SK lentils? In 2016 it was proposed to study two groups of
200 people each in Bangladesh with one group eating SK lentils and the other
eating US lentils. It was also proposed that arsenic would be measured in the
urine38. The results were
published in 2019 and the group eating SK lentils had significantly increased
excretion of the urinary arsenic metabolite DMA at 6 months compared to the
control group who ate lentils with low selenium content39. The group eating SK lentils also had less
respiratory disease (e.g. asthma and allergies) than the control group39.
This is the first human study showing
that eating high selenium food can increase arsenic excretion and improve
health in the presence of continued arsenic exposure.
Acute
Arsenic Toxicity
When exposed to a large dose of arsenic during a relatively short
time period you should seek immediate
medical assistance. The best
indicator of recent ingestion (1-2 days) is the concentration of arsenic in the
urine1.
(GS)2AsSe- Excretion in Some Mammals
The data presented so far in this description of the “Arsenic Detox
Using the Selenium Method” is based primarily upon human data. But there is data from studies involving some
mammals that may be relevant to humans. Selenium
(Se) reacts with arsenic (As) and glutathione (GS) and then facilitates the
elimination of arsenic as a seleno-bis(glutathionyl) arsinium ion [(GS)2AsSe-]
in the bile and feces of rabbits40-42, rats43, and hamsters44.
When sodium selenite or sodium selenate is mixed with arsenite in
the required presence of glutathione and erythrocytes, (GS)2AsSe-
is produced in rabbits and excreted
by the liver into the bile and ultimately excreted in the feces40-42. It was observed in rats that the administration of selenite significantly increased
the amount of arsenic in rat bile43. Thirty minutes after hamsters were injected with selenite and arsenite these metals were
found to be concentrated as (GS)2AsSe- in the liver, gall
bladder, and small intestine44.
These experiments all involved sodium selenite or
sodium selenate injection in non-human mammals and none of these experiments
looked at the ratio and amounts of arsenic excreted in the urine as MMA and DMA
versus arsenic excreted in the feces as (GS)2AsSe-.
More human
data is needed before we can conclude that oral selenium supplementation safely
enhances the formation and elimination of arsenic as (GS)2AsSe-. If this is a major mode of arsenic
elimination in humans, then there would be an equivalent elimination of
selenium and an oral selenium supplement would be required to prevent a selenium
deficiency due to chronic arsenic exposure.
References
1) Ratnaike,
R.N.; Acute and chronic arsenic toxicity; Postgrad Med. J.; 79:391-396 (2003)
2) Buchet,
J.P., et al.; Comparison of the urinary excretion of arsenic metabolites after
a single oral dose of sodium arsenite, monomethylarsonate, and dimethylarsinate
in man; Int. Arch Occup. Environ. Health; 48(1):71-9 (1981)
3) Christian,
W.J., et al.; Distribution of urinary selenium and arsenic among pregnant women
exposed to arsenic in drinking water; Environ. Res.; 100:1165-122 (2006)
4) Hsueh,
Y.M., et al,; Determinants of inorganic arsenic methylation capability among
residents of the Lanyang Basin, Taiwan; arsenic and selenium exposure and
alcohol consumption; Toxicol. Lett.; 137(1-2):49-63 (2003)
5) Su, C-T, et al.; Plasma selenium influences
arsenic methylation capacity and developmental delays in preschool children in
Taiwan; Environ. Res.; April; 171:52-9 (2019)
6) Aguilar,
F., et al.; Selenium-enriched yeast as source for selenium added for
nutritional purposes in foods for particular nutritional uses and foods
(including food supplements) for the general population; Scientific Opinion of
the Panel on Food Additives; The EFSA J.; 766:1-42 (2008)
7) Combs,
G.F., et al.; Effects of selenomethionine supplementation on selenium status
and thyroid hormone concentrations in healthy adults; Am. J. Clin. Nutr.;
89:1808-14 (2009)
8) Dheeman,
D.S., et al.; Pathway of human AS3MT arsenic methylation; Chem. Res. Toxicol.;
27:1979-89 (2014)
9) Pilsner,
J.R., et al.; Associations of plasma selenium with arsenic and genomic
methylation of leukocyte DNA in Bangladesh; Environ. Health Perspectives; Jan.;
119(1):113-8 (2011)
10) Walton,
F.S., et al.; Selenium compounds modulate the activity of recombinant rat
AsIII-methyltransferase and the methylation of arsenite by rat and human
hepatocytes; Chem. Res. Toxicol.; 16(3):261-5 (2003)
11) Hsieh,
R-L., et al.; Arsenic methylation capacity and developmental delay in preschool
children in Taiwan; Int. J. Hygeine Environ. Health; July; 217(6):679-686
(2014)
12) Hamadani,
J.D., et al.; Critical window of exposure for arsenic-associated impairment of
cognitive function in pre-school girls and boys: a population-based cohort
study; Int. J. Epidemiology; 40:1593-1604 (2011)
13) Wasserman,
G.A., et al.; A cross-sectional study of well water arsenic and child IQ in
Maine schoolchildren; Environ. Health; 13(23)1-10 (2014)
14) Roh,
T., et al.; Low-level arsenic exposure from drinking water is associated with
prostate cancer in Iowa; Environ. Res.; 159:338-43 (2017)
15) Lewis,
D.R.; Drinking Water Arsenic: The Mallard County, Utah Mortality Study; arsenic
exposure and health effects III; Proceedings of the third international conference
on arsenic exposure and health effects; July 12-15 1998; San Diego, Cal.;
P133-40 (1999)
16) Rahman,
M.M., et al.; Chronic arsenic toxicity in Bangladesh and West Bengal, India—a
review and commentary; J. Toxicol. Clin. Toxicol.; 39(7):683-700 (2001)
17) Chen,
Y., et al.; A prospective study of blood selenium levels and the risk of
arsenic-related premalignant skin lesions; Cancer Epidemiol. Biomarkers Prev.;
16:207-13 (2007)
18) Duffield-Lillico,
A.J., et al.; Selenium supplementation and secondary prevention of nonmelanoma
skin cancer in a randomized trial; J. National Cancer Inst.; Oct.;
95(19):1477-81 (2003)
19) Sun,
H-J., et al.; Arsenic and selenium toxicity and their interactive effects in
humans; Environ. Internat.; 69:148-58 (2014)
20) Zeng,
H., and Combs, Jr., G.F.; Selenium as an anticancer nutrient: roles in cell
proliferation and tumor cell invasion; J. Nutr. Biochem.; 19:1-7 (2008)
21) Bakidere,
S., et al.; Speciation of selenium in supplements by high performance liquid
chromatography - inductively coupled
plasma - mass spectrometry; Anal. Lett.;
48(9):1511-23 (2015)
22) Gosetti,
F., et al.; Speciation of selenium in diet supplements by HPLC – MS/MS methods;
Food Chem.; 105:1738-47 (2007)
23) Kubachka,
K.M., et al.; Evaluation of selenium in dietary supplements using elemental
speciation; Food Chem.; March; 218:313-20 (2017)
24) Bugel,
S., et al.; Absorption, excretion, and retention of selenium from a high
selenium yeast in men with a high intake of selenium; Food Nutr. Res.;
(2008)
25) Reyes,
L.H., et al.; Selenium bioaccessibility assessment in selenized yeast after “in
vitro” gastrointestinal digestion using two-dimensional chromatography and mass
spectrometry; J. Chromatogr. A.; 1110(1-2):108-16 (2006)
26) Larsen,
E.H., et al.; Speciation and bioavailability of selenium in yeast-based
intervention agents used in cancer chemoprevention studies; J AOAC Int.;
Jan.-Feb.; 87(1):225-32 (2004)
27) Food
and Nutrition Board, Institute of Medicine, Selenium Dietary reference intakes
for vitamin C, vitamin E, selenium, and carotenoids; Washington, D.C.: National
Academy Press 284-324 (2000)
28) Thavarajah,
D., et al.; A global survey of effects of genotype and environment on selenium
concentration in lentils (Lens culinaris L.): Implications for nutritional
fortification strategies; Food Chem.; 125:72-6 (2011)
29) Thavarahjah,
D., et al.; High potential for selenium biofortification of lentils (Lens
culinaris L.); J. Agric. Food Chem.; Nov.; 56(22):10747-53 (2008)
30) Vanderheide,
A.P., et al.; Characterization of selenium species in Brazil nuts by
HPLC-ICP-MS and ES-MS; J. Agric. Food Chem.; 50205722-5728 (2002)
31) Infante,
H., et al.; Current mass spectrometry strategies for selenium speciation in
dietary sources of high-selenium; Anal. Bioanal. Chem.; 382:057-67 (2005) – data
from ref. 29
32) Thomson,
C.D., et al.; Brazil nuts: an effective way to improve selenium status; Am. J.
Clin. Nutr.; 87:379-84 (2008)
33) Alfthan,
G., et al.; Effects of nationwide addition of selenium to fertilizers on foods,
and animal and human health in Finland: From deficiency to optimal selenium
status of the population; J. Trace Elem. Med. Biol.; 31:142-7 (2015)
34) Thavarajah,
D., et al.; Chemical form of selenium in naturally selenium rich lentils (Lens
culinaris L.) from Saskatchewan; ; J. Agric Food Chem.; Nov.; 55(18):7337-41
(2007)
35) Sah,
S. and Smits, J.; Dietary selenium fortification: a potential solution to
chronic arsenic toxicity; Toxicol. Environ. Chem.; Aug.; 94(7):1453-65 (2012)
36) Sah,
S., et al,; Treating chronic arsenic toxicity with high selenium lentil diets;
Toxicol. Appl. Pharmacol.; Oct.; 272(1):256-62 (2013)
37) Krohn,
R.M., et al.; High selenium lentil diet protects against arsenic-induced
atherosclerosis in a mouse model; J. Nutr. Biochem.; Jan.; 27:9-15 (2016)
38) Krohn,
R.M.; A high-selenium lentil dietary intervention in Bangladesh to counteract
arsenic toxicity: study protocol for a randomized controlled trial; Trials;
17:218 (2016)
39) Smits,
J.E., et al.; Food as medicine: Selenium enriched lentils offer relief against
chronic arsenic poisoning in Bangladesh; Environ. Res.; June; 176:108561 (2019)
40) Gailer,
J.; et al.; Identification of [(GS)2AsSe]-1 in rabbit
bile by size-exclusion chromatography and simultaneous multielement-specific
detection by inductively coupled plasma atomic emission spectroscopy; Appl.
Organomet. Chem.; 16(2):72-5 (2002)
41) Gailer,
J.; et al.; Biliary excretion of [(GS)2AsSe]-1 after
intravenous injection of rabbits with arsenite and selenite; Chem. Res.
Toxicol.; 15:1466-71 (2002)
42) Manley,
S.A., et al.; The seleno bis(S-glutathionyl)arsinium ion is assembled in
erythrocyte lysate; Chem. Res. Toxicol.; Apr.; 19(4):601-7 (2006)
43) Levander,
O.A., and Baumann, C.A.; Selenium metabolism. VI. Effect of arsenic on the
excretion of selenium in the bile; Toxicol. Appl. Pharmacol.; 9(1):106-15
(1966)
44) Ponomarenko, O., et al.; Selenium mediated
arsenic excretion in mammals: a synchrotron-based study of whole-body
distribution and tissue-specific chemistry; Metallomic; Nov.; 9(11):1585-95
(2017)
Comments
Post a Comment